•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Électronique
  7. A Complete Guide to Graph Representation Learning with Case Studies

A Complete Guide to Graph Representation Learning with Case Studies

E Chandra Blessie, Pethuru Raj Chelliah, B Sundaravadivazhagan
Livre relié | Anglais
203,45 €
+ 406 points
Pré-commander, disponible à partir du 21-05-2026
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Comprehensive resource on graph representation learning (GRL), exploring fundamental principles, advanced methodologies, and case studies

A Complete Guide to Graph Representation Learning with Case Studies provides a concise understanding of the subject of graph representation learning (GRL), a rapidly advancing field in the domain of machine learning. The book explores basic concepts to state-of-the-art techniques, enabling readers to progress from a fundamental understanding of the approach to mastering its application. The authors also cover the topics of graph embedding methods, graph neural network (GNN) -based approaches, and the latest trends in GRL such as deep learning, transfer learning, graph pooling, alignment, and matching, and graph machine learning.

The book includes examples of applications of graph learning methods with real-world case studies in which the covered methods can be utilized. It also includes innovative solutions to graph machine learning problems such as node classification, link prediction, and unsupervised learning, and discusses neighborhood overlap visualization techniques and overlapping neighborhoods in heterogeneous graphs. Finally, the book provides an overview of open and ongoing research directions and student projects, providing a glimpse into potential avenues for future work.

The book also includes information on:

  • Node-level features such as node degree, node centrality, closeness, betweenness, eigenvector, page rank centrality, clustering coefficient, closed triangles, egograph, and motifs
  • Neighborhood sampling techniques such as breadth-first sampling, depth-first sampling, snowball sampling, random walk, shallow walk, edge sampling, link-based sampling, and metapath-based sampling
  • Deep learning models including Graph Autoencoder (GAE), Variational Graph Encoder (VGAE), and Graph Attention Network (GAN)
  • Graph alignment and matching, covering subgraph matching and embedding for matching

A Complete Guide to Graph Representation Learning with Case Studies is a thorough and up-to-date reference on the subject for engineers and researchers in data science and machine learning as well as graduate students in related programs of study.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
432
Langue:
Anglais

Caractéristiques

EAN:
9781394314843
Date de parution :
31-03-26
Format:
Livre relié
Format numérique:
Genaaid

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.