•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Applied Text Analysis with Python

Enabling Language-Aware Data Products with Machine Learning

Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda
Livre broché | Anglais
95,45 €
+ 190 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning.

You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems.

  • Preprocess and vectorize text into high-dimensional feature representations
  • Perform document classification and topic modeling
  • Steer the model selection process with visual diagnostics
  • Extract key phrases, named entities, and graph structures to reason about data in text
  • Build a dialog framework to enable chatbots and language-driven interaction
  • Use Spark to scale processing power and neural networks to scale model complexity

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
330
Langue:
Anglais

Caractéristiques

EAN:
9781491963043
Date de parution :
31-07-18
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
178 mm x 229 mm
Poids :
544 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.