Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Revision with unchanged content. Modern microprocessors make use of speculation, or predictions about future program behavior, to optimize the execution of programs. Perceptrons are simple neural networks that can be highly useful in speculation for their ability to examine larger quantities of available data than more commonly used approaches, and identify which data lead to accurate results. This work first studies how perceptrons can be made to predict accurately when they directly replace the traditional pattern table predictor. Different training me-thods, perceptron topologies, and interference reduction strategies are evaluated. Perceptrons are then applied to two speculative applications: data value prediction and dataflow critical path prediction. Several novel perce-ptron-based prediction strategies are proposed for each application that can take advantage of a wider scope of past data in making predictions than previous predictors could. These predictors are evaluated against local table-based approaches on a custom cycle-accurate processor simulator, and are shown on average to have both superior accuracy and higher instruction-per-cycle performance. This work is addressed to computer architects and com-puter engineering researchers.