•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Classifier Learning for Imbalanced Data

Jörg Mennicke, Christian Münzenmayer, Ute Schmid
Livre broché | Anglais
99,95 €
+ 199 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This work discusses the theoretical abilities of three commonly used classifier learning methods and optimization techniques to cope with characteristics of real-world classification problems, more specifically varying misclassification costs, imbalanced data sets and varying degrees of hardness of class boundaries. From these discussions a universally applicable optimization framework is derived that successfully corrects the error-based inductive bias of classifier learning methods on image data within the domain of medical diagnosis. The framework was designed considering several points for improvement of common optimization techniques, such as the modification of the optimization procedure for inducer-specific parameters, the modification of input data by an arcing algorithm, and the combination of classifiers according to locally-adaptive, cost-sensitive voting schemes. The framework is designed to make the learning process cost-sensitive and to enforce more balanced misclassification costs between classes. Results on the evaluated domain are promising, while further improvements can be expected after some modifications to the framework.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
184
Langue:
Anglais

Caractéristiques

EAN:
9783836492232
Date de parution :
04-08-08
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
254 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.