•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Deep Learning in Textual Low-Data Regimes for Cybersecurity

Markus Bayer
183,45 €
+ 366 points
Pré-commander, date de disponibilité inconnue
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

In today's fast-paced cybersecurity landscape, professionals are increasingly challenged by the vast volumes of cyber threat data, making it difficult to identify and mitigate threats effectively. Traditional clustering methods help in broadly categorizing threats but fall short when it comes to the fine-grained analysis necessary for precise threat management. Supervised machine learning offers a potential solution, but the rapidly changing nature of cyber threats renders static models ineffective and the creation of new models too labor-intensive. This book addresses these challenges by introducing innovative low-data regime methods that enhance the machine learning process with minimal labeled data. The proposed approach spans four key stages:

Data Acquisition: Leveraging active learning with advanced models like GPT-4 to optimize data labeling.
Preprocessing: Utilizing GPT-2 and GPT-3 for data augmentation to enrich and diversify datasets.
Model Selection: Developing a specialized cybersecurity language model and using multi-level transfer learning.
Prediction: Introducing a novel adversarial example generation method, grounded in explainable AI, to improve model accuracy and resilience.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
307
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783658487775
Date de parution :
04-09-25
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
148 mm x 210 mm

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.