Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Die praktische Behandlung der Integralgleichungen bildet einen ver- hältnismäßig jungen, noch im Wachstum begriffenen Zweig der prak- tischen Mathematik. Immerhin hat die Entwicklung praktischer Me- thoden für die linearen Integralgleichungen 2. Art (auch Fredholmsche Integralgleichungen genannt) heute einen Stand erreicht, der es recht- fertigt, die bisher bekannt gewordenen Verfahren zu ordnen und ihre Grundlagen und Zusammenhänge nach Möglichkeit darzulegen. Dies ist der Gegenstand dieses Berichts. Es zeigt sich, daß die weitaus größte Zahl der praktischen Verfahren zu zwei großen Kategorien gehört, nämlich zu den Iterationsverfahren und zu solchen, die sich auf einen Ersatz des Kerns der Integralgleichung zurückführen lassen. Da Iterfl, tion und Kernersatz nicht auf Fredholm- sehe Gleichungen beschränkt sind, so ist zu hoffen, daß die Begründung beider Methoden für Fredholmsche Gleichungen auch von Nutzen für die praktische Behandlung anderer Integralgleichungstypen sein wird, insbesondere für die linearen Integralgleichungen 1. Art, die in diesem Bericht nicht behandelt werden. Obwohl es in vielen Fällen keine Schwierigkeit bereitet, die in diesem Bericht behandelten Methoden auf Integralgleichungen 1. Art anzuwenden, so ist doch die Entwick- lung von Verfahren für diesen Typ noch zu sehr im Flusse, um ihre Zusammenstellung und Ordnung nicht als verfrüht erscheinen zu lassen. Immerhin sei in diesem Zusammenhang auf einige wichtige Literatur hingewiesen, nämlich auf die Bücher und Arbeiten [20], [30], [36], [44], [61], [63], [71], [78], [80] und [83]. Hier wie auch im ganzen Bericht beziehen sich Zahlen in eckigen Klammern auf das am Ende befindliche Literaturverzeichnis. Die Einschließungssätze des H.