•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Federated Edge Learning

Algorithms, Architectures and Trustworthiness

Yong Zhou, Wenzhi Fang, Yuanming Shi, Khaled B Letaief
Livre relié | Anglais | Wireless Networks
274,95 €
+ 549 points
Pré-commander, date de disponibilité inconnue
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book presents various effective schemes from the perspectives of algorithms, architectures, privacy, and security to enable scalable and trustworthy Federated Edge Learning (FEEL). From the algorithmic perspective, the authors elaborate various federated optimization algorithms, including zeroth-order, first-order, and second-order methods. There is a specific emphasis on presenting provable convergence analysis to illustrate the impact of learning and wireless communication parameters. The convergence rate, computation complexity and communication overhead of the federated zeroth/first/second-order algorithms over wireless networks are elaborated.

From the networking architecture perspective, the authors illustrate how the critical challenges of FEEL can be addressed by exploiting different architectures and designing effective communication schemes. Specifically, the communication straggler issue of FEEL can be mitigated by utilizing reconfigurable intelligent surface and unmanned aerial vehicle to reconfigure the propagation environment, while over-the-air computation is utilized to support ultra-fast model aggregation for FEEL by exploiting the waveform superposition property. Additionally, the multi-cell architecture presents a feasible solution for collaborative FEEL training among multiple cells. Finally, the authors discuss the challenges of FEEL from the privacy and security perspective, followed by presenting effective communication schemes that can achieve differentially private model aggregation and Byzantine-resilient model aggregation to achieve trustworthy FEEL.

 This book is designed for researchers and professionals whose focus is wireless communications. Advanced-level students majoring in computer science and electrical engineering  will also find this book useful as a reference.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
186
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783031966484
Date de parution :
18-08-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
155 mm x 235 mm

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.