Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Fractal Geometry was developed to understand the geometry of irregular sets which was not possible using methods from classical Euclidean geometry. The setting of a similitude Iterated Function System (IFS) has provided a sufficiently easy environment to produce highly irregular sets which are fractals. In this book, the notion of scaled IFS is defined and its existence conditions are examined. A lower and upper bounds for the Hausdorff dimension of the attractor of a scaled IFS is obtained. We have explained the construction of some super self similar sets. The topology induced by Hausdorff metric on the set of all non empty compact subsets of a complete metric space is explained. The relation between this topology and the convergence of sets is discussed. Partial metric space is the generalization of a metric space with non zero self distance. The completeness of the space under Hausdorff partial metric is proved and the definitions of fractals is extended to this metric space. Some applications of the field of study in the area of ocean sciences are discussed.