•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Generalized Matrix Inversion: A Machine Learning Approach

Predrag Stanimirovic, Yimin Wei, Shuai Li, Dimitrios Gerontitis, Xinwei Cao
Livre relié | Anglais
335,95 €
+ 671 points
Pré-commander, date de disponibilité inconnue
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book presents a comprehensive exploration of the dynamical system approach in numerical linear algebra, with a special focus on computing generalized inverses, solving systems of linear equations, and addressing linear matrix equations. Bridging four major scientific domains--numerical linear algebra, recurrent neural networks (RNNs), dynamical systems, and unconstrained nonlinear optimization--this book offers a unique, interdisciplinary perspective.

Generalized Matrix Inversion: A Machine Learning Approach explores the theory and application of recurrent neural networks, particularly continuous-time recurrent neural networks (CTRNNs), which use systems of ordinary differential equations to model the influence of inputs on neurons. Special attention is given to CTRNNs designed for finding zeros of equations or minimizing nonlinear functions, with detailed coverage of two important classes: Gradient Neural Networks (GNN) and Zhang (Zeroing) Neural Networks (ZNN). Both time-varying and time-invariant models are examined across scalar, vector, and matrix cases.

Based on the authors' research that has been published in leading scientific journals, the book spans a variety of disciplines, including linear and multilinear algebra, generalized inverses, recurrent neural networks, dynamical systems, time-varying problem solving, and unconstrained nonlinear optimization. Readers will find a global overview of activation functions, rigorous convergence analysis, and innovative improvements in the definition of error functions for GNN and ZNN dynamic systems.

Generalized Matrix Inversion: A Machine Learning Approach is an essential resource for researchers and practitioners seeking advanced methods at the intersection of machine learning, optimization, and matrix computation.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
338
Langue:
Anglais

Caractéristiques

EAN:
9783032014924
Date de parution :
28-11-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
155 mm x 235 mm

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.