Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In der Monographie wird ein systematischer Aufbau der Analysis unter Be- nutzung des Limitierungsbegriffs vorgenommen. Insbesondere werden die Theorie der Limesräume und limesuniformen Räume, die limitierte Algebra und die allgemeine Differentialrechnung entwickelt. Die Notwendigkeit, den Topologiebegriff abzuschwächen und ihn durch den - wie sich zeigt - bedeutend leistungsfähigeren Begriff der Limitierung zu ersetzen, ergibt sich bei einer Reihe von Problemen in Abbildungsräumen. Wir führen zwei Beispiele an. Bekanntlich existiert zu topologischen, ja sogar zu separierten topologischen Räumen X und Y im allgemeinen keine gröbste Topologie von C(X, Y), bezüglich der die Evaluationsabbildung w von C(X, Y) X X in Y stetig ist, was zur Folge hat, daß die Kategorien aller topologischen Räume und aller HAusDoRFF-Räume nicht cartesisch abge- schlossen sind. Es existiert aber stets eine gröbste Limitierung von C(X, Y), bezüglich der w stetig ist, und die Kategorien aller pseudotopologischen und aller separierten pseudotopologischen Räume sind cartesisch abgeschlossen. Nach dem Satz von KELLER-MAISSEN gibt es zu separierten lokalkonvexen topologischen Vektorräumen X und Y nur dann eine Vektorraumtopologie von L(X, Y), bezüglich der die Evaluationsabbildung von L(X, Y) X X in Y stetig ist, wenn X normierbar ist, weshalb zum Beispiel die Kategorien aller topologischen Vektorräume und aller separierten lokalkonvexen topolo- gischen Vektorräume bezüglich Tensorprodukte keine abgeschlossenen Kate- gorien bilden. Die Kategorien aller pseudotopologischen Vektorräume und aller in einem engeren Sinne separierten lokalkonvexen pseudotopologischen Vektorräume sind hingegen, als symmetrische monoidale Kategorien bezüglich Tensorprodukte, abgeschlossen.