Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book investigates homogenisation problems for divergence form equations with rapidly sign-changing coefficients. Focusing on problems with piecewise constant, scalar coefficients in a (d-dimensional) crosswalk type shape, we will provide a limit procedure in order to understand potentially ill-posed and non-coercive settings. Depending on the integral mean of the coefficient and its inverse, the limits can either satisfy the usual homogenisation formula for stratified media, be entirely degenerate or be a non-local differential operator of 4th order. In order to mark the drastic change of nature, we introduce the 'inner spectrum' for conductivities. We show that even though 0 is contained in the inner spectrum for all strictly positive periods, the limit inner spectrum can be empty. Furthermore, even though the spectrum was confined in a bounded set uniformly for all strictly positive periods and not containing 0, the limit inner spectrum might have 0 as an essential spectral point and accumulate at ∞ or even be the whole of C. This is in stark contrast to the classical situation, where it is possible to derive upper and lower bounds in terms of the values assumed by the coefficients in the pre-asymptotics. Along the way, we also develop a theory for Sturm-Liouville type operators with indefinite weights, reduce the question on solvability of the associated Sturm-Liouville operator to understanding zeros of a certain explicit polynomial and show that generic real perturbations of piecewise constant coefficients lead to continuously invertible Sturm-Liouville expressions.