•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Calcul
  7. Integral Geometry and Inverse Problems for Hyperbolic Equations

Integral Geometry and Inverse Problems for Hyperbolic Equations

V G Romanov
Livre broché | Anglais | Tracts in Natural Philosophy | n° 26
83,95 €
+ 167 points
Livraison 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re- search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solution on the data is retained but it is interpreted differently. It is required that solutions depend continuously only on that data which does not take the solutions out of M.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
154
Langue:
Anglais
Collection :
Tome:
n° 26

Caractéristiques

EAN:
9783642807831
Date de parution :
19-01-12
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 244 mm
Poids :
270 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.