Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
With rapid growth of internet traffic over last few years, the area of internet traffic classification becomes very significant for various ISPs. Now days, traditional internet traffic classification techniques such as port number and payload based techniques are seldom used because of use of dynamic port number instead of well-known port number in packet headers and various cryptographic techniques used to encrypt packet payload. Current trends are use of machine learning techniques for internet traffic classification. In this research work, downloaded internet traffic dataset, self-developed internet traffic datasets for packet capture duration of 2 minute and 2 seconds and reduced feature datasets developed using Correlation based Feature Selection Algorithm are employed for analysis purpose. Then, five ML algorithms Multilayer Perceptron, Radial Basis Function Neural Network, C4.5 Decision Tree, Bayes Net and Naïve Bayes algorithms are used for internet traffic classification. This analysis shows that C4.5 is an effective ML technique for internet traffic classification provided packet capture duration and number of features characterizing each sample should be minimum.