Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Überschleifen ist ein Verfahren zum Glätten von unstetigen Bahnübergängen. Bisherige kommerzielle sowie wissenschaftliche Entwicklungen von Überschleifverfahren basieren auf Polynomkurven. Polynom-basierte Überschleifkurven ermöglichen zwar die tangenten- und krümmungsstetige Verbindung von Bahnübergängen, jedoch ist deren Krümmungsprofil, d.h. der Betrag und die Steigung der Krümmung über die Bogenlänge, weder linear noch steuerbar. Die Nichtlinearität des Krümmungsprofils kann Krümmungsspitzen und nachteilige Impulse im Ruckverlauf und seinen Integralen hervorrufen. Auf der anderen Seite bedeutet die fehlende Steuerbarkeit, dass sich das Krümmungsprofil von Polynomkurven zwangsläufig aus der verwendeten Berechnungsvorschrift ergibt. Im Rahmen dieser Arbeit wird ein Überschleifverfahren auf Basis von Klothoiden für den zweidimensionalen Raum entwickelt. Vorteilhafte Eigenschaften von Klothoiden für das Überschleifen sind die Tangenten- und Krümmungsstetigkeit sowie das lineare und steuerbare Krümmungsprofil. Ein Ziel dieser Arbeit ist die Anwendung von Klothoiden, die über die Fresnel-Integrale gebildet werden, als Überschleifkurven für numerische Steuerungen zu untersuchen.