•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Morse Homology with Differential Graded Coefficients

Jean-François Barraud, Mihai Damian, Vincent Humilière, Alexandru Oancea
Livre relié | Anglais | Progress in Mathematics | n° 360
259,45 €
+ 518 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

The key geometric objects underlying Morse homology are the moduli spaces of connecting gradient trajectories between critical points of a Morse function. The basic question in this context is the following: How much of the topology of the underlying manifold is visible using moduli spaces of connecting trajectories? The answer provided by classical Morse homology as developed over the last 35 years is that the moduli spaces of isolated connecting gradient trajectories recover the chain homotopy type of the singular chain complex. 

The purpose of this monograph is to extend this further: the fundamental classes of the compactified moduli spaces of connecting gradient trajectories allow the construction of a twisting cocycle akin to Brown s universal twisting cocycle. As a consequence, the authors define (and compute) Morse homology with coefficients in any differential graded (DG) local system. As particular cases of their construction, they retrieve the singular homology of the total space of Hurewicz fibrations and the usual (Morse) homology with local coefficients. A full theory of Morse homology with DG coefficients is developed, featuring continuation maps, invariance, functoriality, and duality. Beyond applications to topology, this is intended to serve as a blueprint for analogous constructions in Floer theory. 

The new material and methods presented in the text will be of interest to a broad range of researchers in topology and symplectic topology. At the same time, the authors are particularly careful to give gentle introductions to the main topics and have structured the text so that it can be easily read at various degrees of detail. As such, the book should already be accessible and of interest to graduate students with a general interest in algebra and topology. 

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
229
Langue:
Anglais
Collection :
Tome:
n° 360

Caractéristiques

EAN:
9783031880193
Date de parution :
30-05-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
163 mm x 229 mm
Poids :
498 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.