Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Mathematicians with special interest in biology, physics, geography, astronomy, architecture, design, etc., and being prepared to take pictures at any time, might try to answer unusual questions like the followings: What do a zebra, a tiger shark, and a hard coral have in common? How is this with drying mud, wings of dragon flies, and the structures of leaves? What is the "snail king" and is there also a "worm king"? Which curves stay of the same type after being photographed? Do fishes see like we do if we look through a fisheye lens? Which geometric properties of an object have physical consequences? Which kinds of geometric patterns appear when waves are interfering? In this book you can find 180 double pages with at least as many questions of this kind. The principle to attack a problem is often similar: It starts with a photo that is for some reasons remarkable. In a short description an explanation is offered, including relevant Internet links. Additionally one can frequently find computer simulations in order to illustrate and confirm.