Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
449 one finds that for y = Fo (e) C=: n; V3 [Po (2'Yj) 3 -kjF(i) ] (2'Yj)! Fd (2'Yj) 3 -ijF (-m, } 1 ( 14.17) C2 =: n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) ] Fo (2'Yj) 3 -;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G (2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob- tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one- third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n (x) = (12)!e-;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re- presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L