•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Python Reinforcement Learning

Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI Gym and TensorFlow

Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani
Livre broché | Anglais
55,95 €
+ 111 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries

Key Features:

- Your entry point into the world of artificial intelligence using the power of Python

- An example-rich guide to master various RL and DRL algorithms

- Explore the power of modern Python libraries to gain confidence in building self-trained applications

Book Description:

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.

The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL.

By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems.

This Learning Path includes content from the following Packt products:

- Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran

- Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani

What You Will Learn:

- Train an agent to walk using OpenAI Gym and TensorFlow

- Solve multi-armed-bandit problems using various algorithms

- Build intelligent agents using the DRQN algorithm to play the Doom game

- Teach your agent to play Connect4 using AlphaGo Zero

- Defeat Atari arcade games using the value iteration method

- Discover how to deal with discrete and continuous action spaces in various environments

Who this book is for:

If you're an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
496
Langue:
Anglais

Caractéristiques

EAN:
9781838649777
Date de parution :
17-04-19
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
190 mm x 235 mm
Poids :
843 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.