Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In diesem ``Schnupperkurs'' wird eine Einführung in die Theorie der quadratischen Zahlkörper gegeben. Vorgestellt werden die grundlegenden Invarianten wie Ganzheitsbasis, Einheitengruppe und Pellsche Gleichung, sowie der Klassenzahl und der Idealklassengruppe; dabei wird großen Wert auf Beispiele und die konstruktive Berechnung dieser Invarianten gelegt. Dreh- und Angelpunkt der Vorlesung sind Anwendungen auf diophantische Gleichungen, vornehmlich die Bachet-Mordell-Gleichung oder die Fermatgleichungen für die Exponenten 3 und 4. Im letzten Kapitel wird die ambige Klassenzahlformel für quadratische Zahlkörper bewiesen und daraus das quadratische Reziprozitätsgesetz hergeleitet. In einem Anhang wird eine Einführung in das Rechnen mit den Computeralgebra-Systemen pari und sage gegeben. kw quadratische Zahlkörper; Diskriminante; Ganzheitsbasis; Pellsche Gleichung; Klassenzahl; Idealklassengruppe; diophantische Gleichungen; elliptische Kurven; quadratisches Reziprozitätsgesetz