Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The book entitled Real Analysis & contains eight chapters. This book is written for UG and PG students. It includes Uniform convergence. Uniform convergence and continuity. Uniform convergence and integration. Uniform convergence and ifferentiation. Equicontinuous families of functions. The Stone- Weierstrass theorem. Differentiation. The Contraction Principle. The Inverse Function Theorem. The Implicit Function Theorem. Partitions of unity. The space of tangent vectors at a point of Rn. Vector fields on open subsets of Rn. Topological manifolds. Differentiable manifolds. Real Projective space. Differentiable functions and mappings. Rank of a mapping. Immersion. Sub manifolds. Outer measure. Measurable sets and Lebesgue measure. A non-measurable set, Measurable functions, Littlewood's three principles. The Riemann integral. Lebesgue integral of a bounded function over a set of finite measure. Integral of a non-negative function. General Lebesgue integral. Convergence in measure. Differentiation of monotone functions. Functions of bounded variation. Differentiation of an integral. Absolute continuity. Convex functions. Lp-spaces. Holder and Minkowski inequality.