Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The property of human motion perception is used in this dissertation to infer human activity from data using artificial neural networks. One of the main aims of this thesis is to discover which modalities, namely RGB images, optical flow and human keypoints, are best suited for HAR in omnidirectional data. Since these modalities are not yet available for omnidirectional cameras, they are synthetically generated with a 3D indoor simulation with the result of a large-scale dataset, called OmniFlow. Due to the lack of omnidirectional optical flow data, the OmniFlow dataset is validated using Test-Time Augmentation. Compared to the baseline, which contains Recurrent All-Pairs Field Transforms trained on the FlyingChairs and FlyingThings3D datasets, it was found that only about 1000 images need to be used for fine-tuning to obtain a very low End-point Error. For an evaluation on activity-level, two state-of-the-art convolutional neural networks (CNNs), namely the Temporal Segment Network (TSN) for the modalities RGB images and optical flow and the PoseC3D for the modality human keypoints, were used. Both CNNs were trained and validated on OmniFlow and on the real-world dataset OmniLab. For both networks, TSN and PoseC3D, three hyperparameters were varied and the top-1, top-5 and mean accuracies were reported. In addition, confusion matrices indicating the class-wise accuracy of the 15 activity classes have been given for the modalities RGB images, optical flow and human keypoints.