Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The main object of this book is to make statistical inferences (recurrence relations, estimation and prediction) for inverse Weibull model using generalized order statistics. This book has been organized and presented in six Chapters. Basic concepts and some other definitions and notations are given. A review of some of the work done concerning the generalized order statistics (progressive censored data, ordinary order statistics and lower k-record values) on the recurrence relations, the Bayesian and non- Bayesian approaches are given. We are concerned with the problem of estimation of the parameters and the reliability function of inverse Weibull model based on generalized order statistics. For this purpose, the maximum likelihood and Bayes estimators are used. Bayes estimators with respect to balanced squared error loss function and Balanced LINEX loss function are obtained. This was done under assumption of discrete-continuous mixture prior for the unknown model parameters. A Bayesian approach using Markov chain Monte Carlo techniques to generate from the posterior distributions is also developed. Our results are specialized to Progressively Type-II censored data.