•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Calcul
  7. Topics in Extrinsic Geometry of Codimension-One Foliations

Topics in Extrinsic Geometry of Codimension-One Foliations

Vladimir Rovenski, Pawel Walczak
Livre broché | Anglais | Springerbriefs in Mathematics | n° 1
83,95 €
+ 167 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results.

The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator.

The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves.

This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
114
Langue:
Anglais
Collection :
Tome:
n° 1

Caractéristiques

EAN:
9781441999078
Date de parution :
26-07-11
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
195 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.