Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In 1908, H. Wely published the well known Hilbert s inequality. In 1925, G. H. Hardy gave an extension of it by introducing one pair of conjugate exponents. The Hilbert-type inequalities are a more wide class of analysis inequalities which are including Hardy-Hilbert s inequality as the particular case. By making a great effort of mathematicians at about one hundred years, the theory of Hilbert-type integral and discrete inequalities has now come into being. This book is a monograph about the theory of multiple half-discrete Hilbert-type inequalities. Using the methods of Real Analysis, Functional Analysis and Operator Theory, the author introduces a few independent parameters to establish two kinds of multiple half-discrete Hilbert-type inequalities with the best possible constant factors. The equivalent forms and the reverses are also considered. As applications, the author also considers some double cases of multiple half-discrete Hilbert-type inequalities and a large number of examples. For reading and understanding this book, readers should hold the basic knowledge of Real analysis and Functional analysis.