Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Recently Natural Language Processing has seen the rise of computationally expensive (although effective) technologies to deal with the nuances of language. While traditional approaches seem to be less popular nowadays, there are several advantages that these may provide. In particular, n-gram-based models foster the explainability of Artificial Intelligence-based algorithms. This is why this book was conceived. Recent studies applied to related areas (Sidorov, 2013) show that syntactic n-grams can help to improve several tasks, since they consider not only the expressions' words, but also their part of speech and the long distance connections that they can capture. A disadvantage of syntactic n-grams might be the need of a parser, which can be slow and may not be available for all languages, so that the benefits of using this additional resource should be clear. In this work we present an in-depth research in order to present the strengths and weaknesses of using syntactic n-grams in a variety of applications. Some of them have been benefited from this approach, while others have just been scantly explored. Among others, we present several techniques for textual entailment, error correction, and fake news detection. Different kinds of syntactic n-grams (sn-grams) are evaluated: dependency-based sn-grams, and constituent-based sn-grams. We also evaluate these variants along with continuous and non-continuous sn-grams. We expect that this book helps our readers to appreciate the benefits of using n-grams and syntactic n-grams in a number of applications; those detailed in this book, and many others to be found in the vast field of Computational Linguistics.