Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Können Sie sich vorstellen, dass in einem Wettrennen ein Läufer nicht eine Schildkröte einholen kann? Genau das hat der griechische Philosoph Zenon von Elea vor rund 2500 Jahren behauptet und einen Beweis dafür gleich mitgeliefert. Sein Kollege Eubulides von Milet bewies, dass es keine kahlköpfigen Männer geben kann. Obwohl uns die Erfahrung sagt, dass beide Aussagen nicht stimmen, haben Mathematiker und Philosophen lange Zeit gebraucht, um Schwachstellen in der Beweisführung zu entdecken. Die Beschäftigung mit Paradoxa kann uns zu neuen Einsichten über die Grundlagen von Mathematik und Logik führen: Semantische Paradoxa zwingen uns dazu, uns mit Fragen zu Wahrheit und Beweisbarkeit zu befassen und führen uns zu den Unabhängigkeitssätzen von Gödel. Mengentheoretische Paradoxa lassen uns über Existenz und Unendlichkeit nachdenken und benötigen zur Analyse modernste Erkenntnisse aus der Mengentheorie. Ausgehend vom Berry-Paradoxon gelangen wir zu Fragen der Berechenbarkeits- und Komplexitätstheorie und aus diesen scheinbar gesicherten mathematischen Disziplinen ergeben sich neue paradoxe Tatsachen: Zahlen, zu denen es keine Beschreibung gibt, verschiedene Grade des Unendlichen oder die mögliche Transformation einer Erbse in die Sonne. Das vorliegende Buch gibt Ihnen neben der Erläuterung zahlreicher Paradoxa einen guten Überblick in den aktuellen Stand der mathematischen Grundlagenforschung. Obwohl die Ableitungen möglichst vollständig sind, wird dabei Wert auf eine verständliche Sprache gelegt. Dies wird durch zahlreiche Abbildungen und grafische Hervorhebungen unterstützt.