Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The book describes the development and performance of proximal classifiers, a class of kernel-based regularized mean square error type classifier that learns within the penalized modeling paradigm. The name proximal classifier indicates the fact of classification of a test pattern by its proximity either to a hyperplane or to a class centroid. The basic idea of the nonparallel plane classifier is to model each class of data by fitting separate hyperplane through it. A computationally efficient binary Nonparallel Plane Proximal Classifier (NPPC) is described in detail along with its nonlinear extension. NPPC is also extended to classify multiclass data. A new approach of multiclass data classification through vector-valued regression technique by the proximity to a class centroid is described in detail. These classifiers are applied to discriminate cancerous tissue samples from gene microarray data. The book provides a complete literature survey in the field of Support Vector Machine (SVM). It includes mathematical models, detailed solution procedures and algorithms of the different proximal classifiers with hands-on examples and well-documented MATLAB programs.