Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
La simulation numérique est devenue une méthode incontournable de résolution d’équations aux dérivées partielles (EDP). Son implémentation pratique passe par des schémas numériques, qui remplacent l’EDP par un ensemble d’équations discrètes, plus précisément une équation aux différences indicée en temps et en espace. Mais cette opération n’est pas sans conséquence. Le schéma peut introduire des artefacts : oscillations ou étalement des discontinuités présentes dans les conditions initiales, par exemple. L’analyse quantitative des schémas vise à comprendre leur comportement, en particulier quels artefacts ils sont susceptibles d’introduire, et quelles erreurs ils génèrent. Pour y parvenir, elle calcule explicitement des solutions de schémas et les compare aux solutions exactes des EDP. Elle s’appuie principalement sur trois méthodes, que nous présentons dans ce livre. La méthode opératorielle écrit directement la solution du schéma. L’analyse de Fourier en fournit une représentation intégrale. La méthode de l’équation équivalente remplace l’équation aux différences du schéma par une EDP qui reproduit son comportement. Nous appliquons ces méthodes à trois EDP linéaires : équation d’advection, des ondes et de la chaleur, et à un ensemble de schémas représentatifs, caractérisés par leur ordre et leur caractère principal, dissipatif (étalement des discontinuités) ou dispersif (générateur d’oscillations parasites). Pour chacun des schémas étudiés, nous calculons des solutions exactes ou approchées, et les comparons à des simulations numériques. Nous montrons qu’elles peuvent souvent être décrites à l’aide de fonctions spéciales universelles, au sens où elles ne dépendent que de l’ordre et du caractère principal du schéma. Ce livre s’adresse à un public d’étudiants, du master au doctorat, d’ingénieurs et de chercheurs utilisateurs et concepteurs de méthodes numériques. Il vise à les aider à acquérir une compréhension profonde et opérationnelle du comportement des schémas, utile pour choisir le schéma le mieux adapté à une EDP donnée, ou pour en concevoir de nouveaux.