Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
While current approaches to digital image processing in the context of deep learning are motivated by biological processes in the human brain, they are, however, also limited due to the current state of the art of input and output devices. To generate images from real-world scenes, the underlying lattice formats are predominantly based on rectangular or square structures. Yet, the human visual perception system suggests an alternative approach that manifests itself in the sensory cells of the human eye in the form of hexagonal arrangements.This contribution is therefore concerned with the design, implementation, and evaluation of hexagonal solutions in the form of hexagonal deep neural networks (H-DNN). The realized hexagonal functionality had to be built from the ground up as hexagonal counterparts to otherwise conventional square image processing systems, for which hexagonal equivalents for artificial neural network operations, layers, and models had to be implemented.To enable their evaluation, a set of different application areas within astronomical, medical, and industrial image processing are provided that allow an assessment of H-DNNs in terms of their general performance. The presented results demonstrate the possible benefits of H-DNNs for image processing systems. It is shown that H-DNNs can result in increased classification capabilities given different basic geometric shapes and contours, which in turn partially translate into their real-world applications.