Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p 0 is a long-standing one. Work on this question during the last 45 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic leading to the forefront of current research in this field. This is the second part of the three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristics 3. The first volume contains the methods, examples, and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to Aleksei. I. Kostrikin and Alexander A. Premet and the investigation of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristics 3 is given.