Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The focus of this book is on finding the unconstrained minimizer of a function. Specifically, we will focus on the Barzilai and Borwein (BB) method that is a famous two-point stepsize gradient method. Due to BB method's simplicity, low storage and numerical efficiency, the BB method has received a good deal of attention in the optimization community but despite all these advances, stepsize of BB method is computed by means of simple approximation of Hessian in the form of scalar multiple of identity and especially the BB method is not monotone, and it is not easy to generalize the method to general nonlinear functions. Due to the presence of these deficiencies, we introduce new gradient-type methods in the frame of BB method including a new gradient method via weak secant equation, improved Hessian approximation and scaling the diagonal updating. Our proposed methods consider approximation of Hessian in diagonal matrix. Incorporate with monotone strategies, the resulting algorithms belong to the class of monotone gradient methods with globally convergence. Numerical results suggest that for non-quadratic minimization problem, the new methods clearly outperform the BB method.