Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Los espacios de funciones E = F(X, K) (donde X es un conjunto y K = R o C) juegan un papel fundamental en Matemáticas. Si el conjunto X es finito, el espacio E es de dimensión finita; por tanto, todas las topologías razonables (separadas y que hacen continuas las operaciones suma y producto por escalares) que podemos definir son iguales y cualquier operador sobre E es continuo.El estudio de estas cuestiones constituye el objeto del Análisis Funcional, que se ha convertido en un herramienta eficaz e imprescindible en la mayoría de las ramas de la Matemática. El objetivo de este curso es introducir al lector, de un modo bastante elemental, en este tema. Está destinado principalmente a los estudiantes de la Licenciatura de Matemáticas. El lector deseoso de ampliar sus conocimientos en esta área puede consultar la bibliografía que se da al final del texto.