Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Les itérations chaotiques, un outil issu des mathématiques discrètes, sont pour la première fois étudiées pour obtenir de la divergence et du désordre. Après avoir utilisé les mathématiques discrètes pour en déduire des situations de non convergence, ces itérations sont modélisées sous la forme d'un système dynamique et sont étudiées topologiquement dans le cadre de la théorie mathématique du chaos. Nous prouvons que leur adjectif « chaotique » a été bien choisi: ces itérations sont du chaos aux sens de Devaney, Li-Yorke, l'expansivité, l'entropie topologique et l'exposant de Lyapunov, etc. Ces propriétés ayant été établies pour une topologie autre que la topologie de l'ordre, les conséquences de ce choix sont discutées. Nous montrons alors que ces itérations chaotiques peuvent être portées telles quelles sur ordinateur, sans perte de propriétés, et qu'il est possible de contourner le problème de la finitude des ordinateurs pour obtenir des programmes aux comportements prouvés chaotiques selon Devaney, etc. Cette manière de faire est respectée pour générer un algorithme de tatouage numérique et une fonction de hachage chaotiques au sens le plus fort qui soit.