Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In this work, a low substrate temperature silicon deposition process by means of hot-wire chemical vapor deposition was developed. This process was developed in order to facilitate silicon deposition directly onto a pre-fabricated application-specific integrated circuit (ASIC). To further understand the parameter interactions and optimize the processes, an advanced model of the gas-phase and surface reactions in the HWCVD process was developed. By comparing the simulation model to experimental results, a clear correlation between the resulting film crystallinity and the simulated absorption rates of high surface mobility species (especially SiH3) has been observed and interpreted. These films were then deposited onto substrates with pre-fabricated NMOS structures, and then were subject to structuring and release processes. The results of this work highlight the development of an advanced simulation model to provide new industrially relevant insights into HWCVD silicon. In addition, the low-substrate temperature process opens new possibilities for reductions in size of MEMS and ASIC integrated devices.