•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Machine Learning with Pyspark

With Natural Language Processing and Recommender Systems

Pramod Singh
Livre broché | Anglais
41,45 €
+ 82 points
Format
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.
Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You'll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.
After reading this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models. Additionally you'll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.
What You Will Learn
  • Build a spectrum of supervised and unsupervised machine learning algorithms
  • Implement machine learning algorithms with Spark MLlib libraries
  • Develop a recommender system with Spark MLlib libraries
  • Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model

Who This Book Is For
Data science and machine learning professionals.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
223
Langue:
Anglais

Caractéristiques

EAN:
9781484241301
Date de parution :
15-12-18
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
344 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.