Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Making Sense of Multivariate Data Analysis is a short introduction to multivariate data analysis (MDA) for students and practitioners in the behavioral and social sciences. It provides a conceptual overview of the foundations of MDA and of a range of specific techniques including multiple regression, logistic regression, discriminant analysis, multivariate analysis of variance, factor analysis, and log-linear analysis. As a conceptual introduction, the book assumes no prior statistical knowledge, and contains very few symbols or equations. Its primary objective is to expose the conceptual unity of MDA techniques both in their foundations and in the common analytic strategies that lie at the heart of all of the techniques. Although introductory, the book encourages the reader to reflect critically on the general strengths and limitations of MDA techniques. Each chapter includes references for further reading accessible to the beginner.
This is an ideal text for advanced undergraduate and graduate courses across the social sciences. Practitioners who need to refresh their knowledge of MDA will also find this an invaluable resource.