Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Epileptic seizures result from abnormal brain activity and involve both electrical and biomechanical signals. Accurate seizure classification is essential for clinical decision-making, yet conventional diagnostic methods, including self-reports and video monitoring, are limited in detecting seizure types. To overcome these limitations, this study investigates a multimodal approach combining electroencephalography (EEG), surface electromyography (sEMG), and inertial measurement unit (IMU) sensors. A synchronized compact wireless system was developed to capture the modalities, ensuring precise recording and analysis. A systematic signal processing pipeline was applied, including artifact removal, feature extraction, selection, evaluation, and machine learning-based classification. First, each modality was tested individually to assess its potential in seizure classification. The results revealed that a single modality was insufficient, with a maximum accuracy of 94%, highlighting the challenge of seizure similarity. To further explore multimodal classification, validation was conducted in a hospital setting. The results demonstrate that using independent component analysis (ICA) for preprocessing, feature selection techniques based on radar plots, distance metrics, and Big O notation, combined with the XGBoost classifier, led to a classification accuracy of 99%. These findings confirm that EEG, sEMG, and IMU complement each other, significantly enhancing seizure classification.