Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This volume is intended for readers who, whether they be mathematicians, workers in other fields or students, are familiar with the basic approaches and methods of mathematical optimization. The subject matter is concerned with optimization problems in which some or all of the individual data involved depend on one parameter. Such problems are called one-parametric optimization problems. Solution algorithms for such problems are of interest for several reasons. We consider here mainly applications of solution algorithms for one-parametric optimization problems in the following fields: (i) globally convergent algorithms for nonlinear, in particular non-convex, optimization problems, (ii) global optimization, (iii) multi-objective optimization. The main tool for a solution algorithm for a one-parametric optimization problem will be the so-called pathfollowing methods (also called continuation or homotopy methods) (cf. Chapters 3 and 4). Classical methods in the set of stationary points will be extended to the set of all generalized critical points. This could be helpful since the path of stationary points stops in this set, but there is a continuation in the broader set of generalized critical points. However, it will be shown that pathfollowing methods only are not successful in every case. This is the reason why we propose to jump from one connected component in the set of local minimizers and generalized critical points, respectively, to another one (Chapter 5).