Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book provides an in-depth theoretical exploration of quantum transport and optical properties in nanodevices, focusing on quantum dots, topological superconducting nanowires, and graphene. It is designed for graduate students and researchers seeking to understand these systems and their implications for advancing nanophotonic and nanoelectronic technologies. Beginning with foundational concepts in quantum transport, the book covers key phenomena such as the Coulomb blockade, the Kondo effect, and the physics of Majorana fermions and Majorana bound states. A review of graphene's electronic properties and the optical characteristics of quantum dots is also included, establishing a basis for the more advanced topics that follow. The book explores a nanojunction model where a quantum dot is integrated into a semiconducting-superconducting heterostructure that hosts Majorana bound states. The study investigates Majorana-induced phonon-assisted quantum tunneling in topological superconducting nanowires under magnetic flux. This model offers valuable insights for future experiments aimed at detecting Majorana bound states, with implications for topological quantum computing. Additionally, the book explores quantum transport in a system where a semiconductor quantum dot is embedded between monolayer graphene leads. Applying an external magnetic field enables spin-polarized transport, providing an ideal platform for studying many-body quantum phenomena such as the Kondo effect. Using nonequilibrium Green's function formalism, this section highlights how graphene's electronic properties can drive next-generation nanoelectronic devices. Beyond transport, the book also examines the optical properties of quantum dots, focusing on their linear and nonlinear characteristics. Perturbation theory is employed to study absorption coefficients and refractive index changes in two-level quantum dot systems, with potential applications in optoelectronics and photonics. Throughout, complex mathematical treatments are presented in an accessible manner, ensuring that even readers with a foundational understanding of nanophysics can engage with the material. This book serves as a valuable resource for researchers and students working in the fields of nanophysics, nanoelectronics, and quantum device research. It deepens theoretical understanding of these systems but also offers practical insights into their experimental realization and technological potential.