•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Savoirs
  4. Informatique
  5. Programmation
  6. Langages de programmation
  7. Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow

Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow

Konzepte, Tools und Techniken für intelligente Systeme

Aurélien Géron
Livre broché | Allemand | Animals
54,45 €
+ 108 points
Livraison 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

  • Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face
  • Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow 
  • Mit zahlreiche Übungen und Lösungen

Maschinelles Lernen und insbesondere Deep Learning haben in den letzten Jahren eindrucksvolle Durchbrüche erlebt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses Standardwerk verwendet konkrete Beispiele, ein Minimum an Theorie und unmittelbar einsetzbare Python-Frameworks (Scikit-Learn, Keras und TensorFlow), um Ihnen ein intuitives Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme zu vermitteln.

In dieser aktualisierten 3. Auflage behandelt Aurélien Géron eine große Bandbreite von Techniken: von der einfachen linearen Regression bis hin zu Deep Neural Networks. Zahlreiche Codebeispiele und Übungen helfen Ihnen, das Gelernte praktisch umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten.

  • Lernen Sie die Grundlagen des Machine Learning anhand eines umfangreichen Beispielprojekts mit Scikit-Learn
  • Erkunden Sie zahlreiche Modelle, einschließlich Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden
  • Nutzen Sie unüberwachtes Lernen wie Dimensionsreduktion, Clustering und Anomalieerkennung
  • Erstellen Sie neuronale Netzarchitekturen wie Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Autoencoder, Diffusionsmodelle und Transformer
  • Verwenden Sie TensorFlow und Keras zum Erstellen und Trainieren neuronaler Netze für Computer Vision, Natural Language Processing, Deep Reinforcement Learning und generative Modelle

Spécifications

Parties prenantes

Auteur(s) :
Traducteur(s):
Editeur:

Contenu

Nombre de pages :
878
Langue:
Allemand
Collection :

Caractéristiques

EAN:
9783960092124
Date de parution :
29-08-23
Format:
Livre broché
Dimensions :
165 mm x 45 mm
Poids :
1386 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.