•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Savoirs
  4. Informatique
  5. Sciences informatiques
  6. Intelligence artificielle
  7. Python for Financial Modeling: Practical Techniques from Data Analysis to Deep Learning

Python for Financial Modeling: Practical Techniques from Data Analysis to Deep Learning EBOOK

Aarav Joshi
Ebook | Anglais
6,49 €
+ 6 points
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

Python for Financial Modeling: Practical Techniques from Data Analysis to Deep Learning


This comprehensive guide bridges the worlds of finance and data science, providing financial professionals with practical Python techniques for modern quantitative analysis. From data acquisition and preprocessing to advanced machine learning models, readers will learn how to implement powerful financial modeling tools using Python's robust ecosystem. The book covers essential topics including time series analysis, portfolio optimization, risk assessment, algorithmic trading strategies, and deep learning applications in finance. With a hands-on approach, readers will master libraries such as pandas, NumPy, scikit-learn, and TensorFlow while building real-world financial models. Whether you're a financial analyst, quantitative researcher, or aspiring data scientist, this book provides the practical skills needed to leverage Python's capabilities for data-driven financial decision-making. Each chapter includes executable code examples, case studies, and best practices to help readers immediately apply these techniques to their own financial projects.


 

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Langue:
Anglais

Caractéristiques

EAN:
9798231049578
Date de parution :
20-05-25
Format:
Ebook
Protection digitale:
/
Format numérique:
ePub

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.