•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Électronique
  7. Robust Iterative Learning Control of Industrial Batch Systems

Robust Iterative Learning Control of Industrial Batch Systems

Tao Liu, Shoulin Hao, Youqing Wang, Dewei Li
Livre relié | Anglais | Intelligent Control and Learning Systems | n° 22
179,45 €
+ 358 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book offers advanced iterative learning control (ILC) and optimization methods for industrial batch systems, facilitating engineering applications subject to time- and batch-varying process uncertainties that could not be effectively addressed by the existing ILC methods. In particular, advanced ILC designs based on the classical proportional-integral-derivative (PID) control loop are presented for the convenience of application, which could not only realize perfect tracking of the desired output trajectory under repetitive process uncertainties and disturbance, but also maintain robust tracking against time-varying uncertainties and disturbance. Moreover, optimization-based ILC designs are provided to deal with the input and/or output constraints of batch process operation, based on the mode predictive control (MPC) principle for process optimization. Furthermore, predictor-based ILC designs are given to deal with time delay in the process input, state or output as often encountered in practice, which could obtain evidently improved control performance compared to the developed ILC methods mainly devoted to delay-free batch processes. In addition, data-driven ILC methods are also presented for application to batch operation systems with unknown dynamics and time-varying uncertainties. Benchmark examples from the existing literature are used to demonstrate the advantages of the proposed ILC methods, along with real applications to industrial injection molding machines, 6-degree-of-freedom robotic manipulator, and refrigerated/heating circulators of pharmaceutical crystallizers. This book will be a valuable source of information for control engineers and researchers in industrial process control theory and engineering field. It can also be used as an advanced textbook for undergraduate and graduate students in control engineering, process system engineering, chemical engineering, mechanical engineering, electrical engineering, biomedical engineering and industrial automation engineering.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
230
Langue:
Anglais
Collection :
Tome:
n° 22

Caractéristiques

EAN:
9789819697779
Format:
Livre relié
Dimensions :
155 mm x 235 mm

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.