•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Support Vector Machine Learning

Application to Compression of Digital Images

Jonathan Robinson
Livre broché | Anglais
67,45 €
+ 134 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Methods exploring the application of support vector machine learning (SVM) to still image compression are detailed in both the spatial and frequency domains. In particular the sparse properties of SVM learning are exploited in the compression algorithms. A classic radial basis function neural network requires that the topology of the network be defined before training. An SVM has the property that it will choose the minimum number of training points to use as centres of the Gaussian kernel functions. It is this property that is exploited as the basis for image compression algorithms presented in this book. Several novel algorithms are developed applying SVM learning to both directly model the colour surface and model transform coefficients after the surface has been transformed into the frequency domain. It is demonstrated that compression is more efficient in frequency space. In the frequency domain, results are superior to that of JPEG. For example, the quality of the industry standard 'Lena' image compressed 63:1 for JPEG is slightly worse quality than the same image compressed 192:1 with the RKi-1 algorithm detailed in this book.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
176
Langue:
Anglais

Caractéristiques

EAN:
9783639100006
Date de parution :
06-11-08
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
244 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.