Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Research Paper (undergraduate) from the year 2006 in the subject Electrotechnology, grade: 1,0, University Karlsruhe (TH), language: English, abstract: Avoiding collision accidents is becoming more and more an important topic in the research field of driver assistant systems. Especially for vision-based detection systems there are various approaches, which are built upon many different methods. This thesis deals with the avoidance of pedestrian accidents, caused by Blind Corner view problems. The presented approach comprises a pedestrian detection subsystem, which is part of a large camera system framework covering observation of the car environment. Based on a Blind Corner Camera and a neural network classification method, research in this thesis is focused on two aspects: detection improvement and danger level estimation. Since vision-based classification methods usually are still not able to yield perfect results, because of the complexity of this task, the detection result has to be improved by preprocessing and post processing. In this work, first, effects of image enhancement methods on detection are tested as preprocessing methods and, secondly, a new approach for a simple tracking and estimation strategy is presented, which improves detection in the way of a post processing method. Finally, information from tracking and prediction is used to estimate a danger level for pedestrians, which provides information about how collisionprone the current situations is.