Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Comprehensive numerical model is developed to investigate the characteristics of FWM in silicon nanowire waveguides. The model is based on a set of coupled nonlinear Schrödinger equations describing the propagation of the pump, signal, and converted waveform through the waveguide. The effect of dispersion, free-carrier absorption, two-photon absorption, and state of polarization are taken into account. Analytical solutions are also deduced from the model under simplified conditions to get approximated description for the key roles played by various system parameters. Both numerical and analytical models are applied to four silicon nanowire waveguides, differ in their cross section dimensions, to assess their FWM-based wavelength conversion characteristics. The polarization-dependent parameters of these waveguides are included in the modeling. The effect of pump power, waveguide length, and wavelength shift on conversion efficiency are addressed in details. The investigation is carried further by simulating the performance of these wavelength converters in optical communication systems using Optisystem software.