Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Die vorliegende Arbeit befasst sich mit der Lösung materialwissenschaftlicher Optimierungsfragestellungen entlang der Kette Prozess-Struktur-Eigenschaften, basierend auf maschinellem Lernen. Im Fokus stehen dabei Fragestellungen bezüglich des Designs der Mikrostruktur metallischer Werkstoffe. Hierfür wird in der Arbeit eine Vorgehensweise zur Erzeugung maschineller Lernmodelle basierend auf numerischen Simulationen vorgestellt. Die entwickelte Vorgehensweise wird anhand von drei Anwendungsbeispielen validiert. Die Anwendungsbeispiele behandeln Materialdesignfragestellungen bezüglich der Optimierung der Korngrößenverteilung und der Optimierung der kristallographischen Textur von Blechwerkstoffen für gewünschte makroskopische Materialeigenschaften sowie der Identifikation von Materialmodellparametern für gegebene Fließkurven. Die Ergebnisse der Arbeit bieten einen Mehrwert nicht nur im wissenschaftlichen, sondern auch im technisch-ökonomischen Bereich. Die Anwendung der entwickelten Optimierungsstrategien im Bereich Mikrostrukturdesign eröffnet Möglichkeiten, hochperformante Materialien zu entwerfen und daran angeschlossen eine Grundlage zur Steuerung von Umformprozessen zu legen.