Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Sequence memories play an important role in biological systems. This work demonstrates how a sequence memory may be built from biologically plausible spiking neural components. The memory is incorporated in a sequence machine, an automaton that can perform on-line learning and prediction of sequences of symbols. The sequence machine comprises an associative memory which is a variant of Pentti Kanerva's Sparse Distributed Memory, together with a separate memory for storing the sequence context or history. The symbols constituting a sequence are encoded as rank-ordered N-of-M codes, each code being implemented as a burst of spikes emitted by a layer of neurons. When appropriate neural structures are used the spike bursts maintain coherence and stability as they pass through successive neural layers. The system is modelled using a representation of order that abstracts time, and the abstracted system is shown to perform equivalently to a low-level spiking neural system. The spiking neural implementation of the sequence memory model highlights issues that arise when engineering high-level systems with asynchronous spiking neurons as building blocks.